Ptaquiloside-induced early-stage urothelial lesions show increased cell proliferation and intact β-catenin and E-cadherin expression.
نویسندگان
چکیده
Bracken (Pteridium aquilinum) is a carcinogenic plant whose main toxin, ptaquiloside, causes cancer in farm and laboratory animals. Ptaquiloside contaminates underground waters as well as meat and milk from bracken-grazing animals and is a suspected human carcinogen. A better understanding of the underlying mechanisms of carcinogenesis can be achieved by studying the early stages of this process. Unfortunately, most research on ptaquiloside has focused on the late, malignant, lesions, so the early changes of ptaquiloside-induced carcinogenesis remain largely unknown. This study aims to characterize early-stage ptaquiloside-induced urinary bladder lesions both morphologically and immunohistochemically. 12 male CD-1 mice were administered 0.5 mg ptaquiloside intraperitoneally, weekly, for 15 weeks, followed by 15 weeks without treatment. 12 control animals were administered saline. Bladders were tested immunohistochemically for antibodies against a cell proliferation marker (Ki-67), and two cell adhesion markers (E-cadherin and β-catenin). Two exposed animals died during the work. Six ptaquiloside-exposed mice developed low-grade and two developed high grade urothelial dysplasia. No lesions were detected on control animals. Significantly, increased (p < 0.05) Ki-67 labeling indices were found on dysplastic urothelium from ptaquiloside-exposed mice, compared with controls. No differences were found concerning E-cadherin and β-catenin expression. Early-stage ptaquiloside-induced urothelial lesions show increased cell proliferation but there is no evidence for reduced intercellular adhesiveness, though this may be a later event in tumor progression.
منابع مشابه
Ptaquiloside-induced early-stage urothelial lesions show increased cell proliferation and intact β-catenin and E-cadherin expression Running title: Immunohistochemistry of ptaquiloside-induced lesions
aAbel Salazar Institute for Biomedical Sciences (ICBAS), University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal. bLEPAE, Chemical Engineering Department, Engineering Faculty, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal. cVeterinary Sciences Department, CECAV, University of Trás-os-Montes and Alto Douro, Quinta de Prados 5001-801 Vila Real, Portugal.
متن کاملClinical Significance of Altered Expression of β-Catenin and E-Cadherin in Oral Dysplasia and Cancer: Potential Link with ALCAM Expression
BACKGROUND Perturbations in cell adhesion molecules are linked to alterations in cadherin-catenin complexes and likely play major roles in invasion and metastasis; their impact on early precancerous stages remains yet unknown. We showed ALCAM overexpression in early oral lesions and its cytoplasmic accumulation in oral squamous cell carcinoma (OSCC) to be a predictor of disease progression and ...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملβ-Catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial–mesenchymal transition
Human lung cancers, including squamous cell carcinoma (SCC) are a leading cause of death and, whilst evidence suggests that basal stem cells drive SCC initiation and progression, the mechanisms regulating these processes remain unknown. In this study we show that β-catenin signalling regulates basal progenitor cell fate and subsequent SCC progression. In a cohort of preinvasive SCCs we establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology
دوره 29 7 شماره
صفحات -
تاریخ انتشار 2014